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The general expressions we recently derived for calculating internal conversion decay rate constants between
two adiabatic and between two diabatic displaced-distorted-rotated harmonic potential energy surfaces
(including all vibrational modes) are now applied to determine the decay rate constants of 1B2u(ππ*)f1B3u(nπ*),
1B2u(ππ*)f1Ag, and 1B3u(nπ*)f1Ag internal conversions in pyrazine molecule. The minimal models with
respect to the number and the types of vibrational modes are investigated for these processes. An exact
expression for the adiabatic vibrational frequencies of the coupling modes in terms of interstate coupling
constants and the parameters determining the diabatic potential energy surfaces are also derived.

1. Introduction

Pyrazine has two close-lying lowest singlet excited electronic
states 1B3u(nπ*) and 1B2u(ππ*). The electronic absorption spectra
from the ground electronic state 1Ag to the excited electronic
states 1B3u and 1B2u have been widely studied.1-5 The nπ*
absorption exhibits well-resolved band system, while the ππ*
excitation results in a broadband system with little structure that
indicates an ultrafast (on a femtosecond time scale) 1B2uf1B3u

internal conversion process. As a result, 1Agf1B3u excitation
has been almost completely analyzed, but much of the photo-
physical dynamics of the 1B3u is still under investigation. In
addition, the molecule exhibits fluorescence with a low quantum
yield both in solution6 and in the vapor,7 but strong phospho-
rescence in the vapor and condensed phases.8,9

The unusual electronic absorption and the ultrafast electronic
relaxation are ascribed to the (linear) vibronic coupling between
1B3u and 1B2u excited electronic states through the mode ν10a of
symmetry b1g, which is the only mode of this species in the
molecule.4 The coupling is strong enough to cause the distortion
of potential energy surfaces along this mode and ν10a progres-
sions to appear in absorption and fluorescence spectra with
anomalous anharmonic level spacing in 1B3u and (perhaps) 1B2u

manifold.2,4

Theoretical efforts have been made to simulate the 1B3u and
1B2u absorption (as well as resonance Raman) spectra and the
ultrafast 1B2uf1B3u electronic relaxation. To that end, several
model Hamiltonians of increasing dimensionality and complex-
ity in the diabatic electronic representation have been employed.
The models that differ in the expansion orders for the diagonal
and off-diagonal matrix elements of the Hamiltonian matrix and
the number of the vibrational modes taken into account are
called the 4-mode model,10 7-mode model,11 24-mode system-
bath model,12-15 and 24-mode pyrazine model.16,17 The last
model is the most realistic model in which the correct symmetry
of all 24 modes of the pyrazine molecule is considered. The
calculations based on these model Hamiltonians reproduce the
essential features of 1B3u and 1B2u absorption (and resonance
Raman11) spectra; however, to simulate the broad spectral
envelope of the 1B2u, a phenomenological broadening has to be

taken into the calculations. Besides, the ultrafast electronic
relaxation decay can be inferred from these models.14,17,23,34,35

It has been experimentally found that the 1B3uf1Ag internal
conversion decay time constant varies from about 10 ns for the
ground vibrational state19 to (22 ( 1) ps for highly excited
vibrational states18-21 of the 1B3u excited electronic state. Accord-
ingly, the decay time constant of 1B2uf1B3u internal conversion is
(20 ( 10) fs,21 and that of 1B2uf1Ag internal conversion is about
13 ps (estimated from Figure 5 of ref19) for the ground vibrational
state of the 1B2u excited electronic state.

It is the purpose of this Article to calculate the internal
conversion decay rate constants associated with the three lowest
singlet electronic states 1B2u, 1B3u, and 1Ag in pyrazine molecule.
The general expressions recently derived22 for the decay rate
constants between two adiabatic and between two diabatic
displaced-distorted-rotated harmonic potential energy surfaces,
including all vibrational modes, are employed. Calculation of
rate constants involving the adiabatic potential surfaces requires
the adiabatic vibrational frequencies, so a general exact expres-
sion for the adiabatic frequencies in terms of the coupling
constants and the parameters determining the diabatic potential
surfaces is derived in advance.

2. Theory

2.1. Vibronic Hamiltonian Matrix. The vibronic states of
a molecular system can be described in the adiabatic or diabatic
electronic representation.25,26

In the adiabatic electronic representation, the electronic states
{Φn(r,Q)} are defined as the eigenstates of the electronic
Hamiltonian:

[T̂e(r) + Û(r, Q)]|Φn〉 ) En(Q)|Φn〉 (1)

where T̂e(r) is the electronic kinetic energy and Û (r,Q) is the
total potential energy operator. The exact vibronic states are
then expanded in the adiabatic electronic states as:

|ψj〉 ) ∑
n

�n
(j)(Q)|Φn〉 (2)

and the expansion coefficients �n
(j)(Q) are determined by
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[T̂e(r) + T̂N(Q) + Û(r, Q)]|ψj〉 ) εj|ψj〉 (3)

where T̂N(Q) is the nuclear kinetic energy operator. However,
this leads to a coupled set of nonlinear equations. To linearize
these equations, we expand the adiabatic coefficients �n

(j)(Q)
for each adiabatic electronic state |Φn〉 , in suitable vibrational
basis sets {�nν(Q)}:

�n
(j)(Q) ) ∑

ν
Rnν,j|�nν〉 (4)

The exact vibronic energies εj and the expansion coefficients
Rnν,j are thereafter obtained by diagonalizing the vibronic
Hamiltonian matrix. This matrix has the following elements:22

Hmµ,nν ) 〈�mµ|[T̂N(Q) + En(Q) + Λ̂nn(Q)]δmn +

(1 - δmn)Λ̂mn(Q)|�nν〉 (5)

where the nonadiabatic coupling operator is defined by:

Λ̂mn(Q) ) -p
2

2 ∑
k [ ∫ d3rΦm

* (r, Q)
∂

2Φn(r, Q)

∂Qk
2

+

2∫ d3rΦm
* (r, Q)

∂Φn(r, Q)

∂Qk

∂

∂Qk] (6)

Equation 5 suggests that the adiabatic vibrational states �nν(Q)
should be chosen as the solutions of the unperturbed equation:

[T̂N(Q) + En(Q) + Λ̂nn(Q)]|�nν〉 ) εnν
0 |�nν〉 (7)

where εnν
0 are defined as the zero-order adiabatic vibronic energy

levels. By this choice for the vibrational basis sets, the
Hamiltonian matrix elements take the following form:

Hmµ,nν ) εnν
0 δmnδµν + (1 - δmn)〈�mµ|Λ̂mn(Q)|�nν〉 (8)

where the matrix elements 〈�mµ|Λ̂mn(Q)|�nν〉 are the vibrational
overlap integrals modulated by the nonadiabatic operator. The
choice of vibrational basis sets is, in principle, free. To avoid
the evaluation of the modulated vibrational overlap integrals,
the other choice for the vibrational basis sets is to employ the
vibrational states of a particular electronic state, for example,
of the ground electronic state, to expand the expansion coef-
ficients of each electronic state. In this case, although the
evaluation of the vibrational overlap integrals is avoided, the
unperturbed vibronic Hamiltonian matrix is no longer diagonal.

In the diabatic electronic representation, the diabatic electronic
states {φn(r,Q)} are defined as a unitary transformation of the
adiabatic electronic states such that the electronic states become
smoothly varying functions of the nuclear coordinates and the
derivative coupling are sufficiently small to be neglected.33 The
exact vibronic states are then expanded as:

|ψj〉 ) ∑
n

�̃n
(j)(Q)|φn〉 ) ∑

nν
R̃nν,j|φn�̃nν〉 (9)

where {�̃nν(Q)} is a suitable vibrational basis set. As in the
adiabatic case, the exact vibronic energies εj and the expansion
coefficients R̃nν,j are determined by diagonalizing the vibronic
Hamiltonian matrix, which has the following matrix elements:

H̃mµ,nν ) 〈 �̃mµ|[T̂N(Q) + Ẽn(Q)]δmn +

(1 - δmn)Λ̃mn(Q)|�̃nν〉 (10)

where Ẽn(Q) ) Λ̃nn(Q) and the diabatic coupling elements are
defined by:

Λ̃mn(Q) ) ∫ d3rφm
* (r, Q)[T̂e(r) + Û(r, Q)]φn(r, Q)

(11)

Again, eq 10 recommends that the diabatic vibrational states {
�̃nν (Q)} should be chosen as the solutions of the unperturbed
equation:

[T̂N(Q) + Ẽn(Q)]|�̃nν〉 ) ε̃nν
0 |�̃nν〉 (12)

where ε̃nν
φ are defined as the zero-order diabatic vibronic

energy levels. By this choice, the vibronic Hamiltonian matrix
reduces to:

H̃mµ,nν ) ε̃nν
0 δmnδµν + (1 - δmn)〈 �̃mµ|Λ̃mn(Q)|�̃nν〉 (13)

It is seen that neither the adiabatic nor the diabatic vibronic
states are the true eigenstates of the vibronic Hamiltonian, so
they are not the stationary states, and the off-diagonal elements
of the vibronic Hamiltonian matrix induce transitions between
the adiabatic or the diabatic vibronic states. Indeed, the general
solution of the time-dependent Schrodinger equation may be
written as:

|ψ(t)〉 ) ∑
j

cj exp(-iεjt/p)|ψj〉 (14)

Let us consider the adiabatic expansion, eqs 2 and 4, for our
discussion (similar argument applies to the diabatic expansion,
eq 9). To find the constants c1, c2,..., we need some initial
conditions. Suppose the system is prepared in the adiabatic
vibronic state |Φs�sσ〉 at time t ) 0, we then simply find cj )
Rsσ,j*, noticing that the matrix Rnν,j is unitary. Therefore, the
probability amplitude asσ(t) that the system at time t is still in
the state |Φs�sσ〉 is given by:

asσ(t) ) ∑
j

|Rsσ,j|
2exp(-iεjt/p) (15)

and the probability amplitude alλ(t) of finding the system at time
t in the state |Φl�lλ〉 , assuming it was initially prepared in the
state |Φs�sσ〉 , by:

alλ(t) ) ∑
j

Rsσ,j
* Rlλ,j exp(-iεjt/p) (16)

For the case in which a vibronic state |Φs�sσ〉 , at an energy
εsσ

0 , is embedded in a dense manifold of the high vibrational
levels of a second adiabatic electronic state, an approximate
expression for the probability amplitude asσ(t) is given by:22

asσ(t) = exp[- i
p

(εsσ
0 + ∆εsσ) - 1

2
Γsσt] (17)

where ∆εsσ is the shift of the zero-order adiabatic vibronic energy
level εsσ

0 , due to the off-diagonal vibronic matrix elements Hlλ,sσ in
second-order, and the decay rate constant Γsσ is defined as:

Γsσ ) 2π
p ∑

λ
|Hlλ,sσ|2δ(εsσ

0 - εlλ
0 ) (18)

2.2. Diabatic and Adiabatic Potential Energy Surfaces.
The diabatic potential energy surfaces Ẽm(Q) are defined as the
diagonal elements of the electronic Hamiltonian matrix in diabatic
electronic states.The diabatic potential surfaces are, by assumption,
the slowly varying function of vibrational normal coordinates Q.
Thus, we may expand Ẽm(Q) of any electronic state about a
reference nuclear configuration (say, the equilibrium configuration
of the ground electronic state of the molecule):
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Ẽm(Q) ) Ẽm(0″) + ∑
k

κk
(m)Qk

″ + 1
2 ∑

kl

ηkl
(m)Q″kQ″ l

) Ẽm(0″) + Q″TK(m) + 1
2

Q″Tη(m)Q″ (19)

where Ẽm(0″) is the vertical excitation energy, and κk
(m) and ηkl

(m)

are the first and the second derivatives of Ẽm(Q) evaluated at
the ground electronic state equilibrium configuration. Notice that
for the ground electronic state, that is, for m ) g, the linear
terms in eq 19 vanish and ηkl

(g) ) Ω″k
2δkl, where { Ω″k} are the

set of the diabatic angular vibrational frequencies of the ground
electronic state, which are equal to the adiabatic vibrational
angular frequencies in the absence of vibronic coupling.

To evaluate the vibronic Hamiltonian matrix elements given
by eq 10, in which the vibrational basis sets belong to different
electronic states, first we need to carry out a transformation on
eq 19 to change the vibrational variables to those of the
corresponding electronic states. To that end, we may employ
the orthogonal transformation (the so-called Duschinsky trans-
formation27):

Q′ ) J(m)Q″ + D(m) (20)

where J(m) is the Duschinsky rotation matrix and D(m) is the
displacement vector whose components are the shift of the
equilibrium configuration of the excited electronic state with
respect to the ground electronic state equilibrium configuration.
The matrix J(m) is chosen to diagonalize the matrix η(m):

J(m)η(m)J(m)T ) Λ′ ) diag(Ω′
1
2, Ω′

2
2, ..., Ω′

N
2 ) (21)

where {Ω′k} are the set of the diabatic angular vibrational
frequencies corresponding to the diabatic electronic state |φm〉 ,
and the matrix D(m) to remove the linear terms from eq 19:

D(m) ) Λ′-1J(m)K(m) ) J(m)η-(m)K(m) (22)

where η-(m) is the inverse of the matrix η(m). So, we obtain:

Ẽm(Q) ) Ẽm(0′) + 1
2

Q′TΛ′Q′ (23)

where Ẽm(0′) is the “bottom of the well” energy of the mth
electronic state:

Ẽm(0′) ) Ẽm(0″) - 1
2

D(m)TΛ′D(m) (24)

A similar transformation may be applied for any excited
electronic state. By these transformations, the basis sets {
�̃mµ(Q)} become the harmonic oscillator wave functions centered
on the corresponding diabatic potential energy surface.

The adiabatic potential energy surfaces are the eigenvalues
of the electronic Hamiltonian matrix in the diabatic electronic
states. When two electronic states, say m and n, are close to
each other and well separated from the rest, the diagonalization
of the electronic Hamiltonian matrix is the easiest and leads to
the adiabatic potential energy surfaces as well as the diabatic-
to-adiabatic transformation matrix. The adiabatic potential
energy surfaces are as follows:

Em(Q), En(Q) ) 1
2

[Ẽn(Q) + Ẽm(Q)] ( 1
2

{[Ẽn(Q) -

Ẽm(Q)]2 + 4|Λ̃mn(Q)|2}1/2 (25)

where Λ̃mn(Q) are the off-diagonal matrix elements of the
electronic Hamiltonian in the diabatic representation. Expanding
the square-root term, we obtain:

Em(Q) ) Ẽm(Q) - ∑
j)1

∞ (1/2
j )22j-1

|Λ̃mn(Q)|2j

[Ẽn(Q) - Ẽm(Q)]2j-1

(26a)

and

En(Q) ) Ẽn(Q) + ∑
j)1

∞ (1/2
j )22j-1

|Λ̃mn(Q)|2j

[Ẽn(Q) - Ẽm(Q)]2j-1

(26b)

where ( j
1/2 ) is the binomial coefficient.

Suppose that the diabatic electronic states |φn〉 and |φm〉 are
linearly coupled by the nontotally symmetric vibrational modes
that belong to irreducible representation, say Γp, and that we
can assume the following up-to-second-order expansion for
Λ̃mn(Q) in terms of the ground electronic state vibrational modes:

Λ̃mn(Q) ) ∑
p

λpQ″p + ∑
i,j

cijQ″ iQ″ j (27)

where λp and cij are the first-and second order interstate coupling
constants, respectively. The first sum goes over all modes
belonging to Γp and the second sum over all pairs of modes,
the product of which belongs to Γp.

We can now express the adiabatic potential surfaces in terms
of vibrational variables of the corresponding excited electronic
state. Using eq 19 (and the similar expression for Ẽn(Q)) along
with eq 20, the energy difference in the denominator of eq 26a
can be written as:

Ẽn(Q) - Ẽm(Q) ) G(m) + g(m)TQ′ +
1
2

Q′TJ(m)(η(n) - η(m))J(m)TQ′ (28)

where

G(m) ) 2∆ - (K(n) - K(m))T(η-(m)K(m)) +
1
2

(η-(m)K(m))T(η(n) - η(m))(η-(m)K(m)) (29a)

and the column matrix g(m) is defined by:

g(m) ) J(m)[(K(n) - K(m)) - (η(n) - η(m))(η-(m)K(m))]
(29b)

Here, Ẽn(0″) - Ẽm(0″) ) 2∆ is the vertical energy gap between
the electronic states m and n.

Substituting eqs 27 and 28 into eq 26a and making use of eq
20, we obtain the following expression for the adiabatic potential
surface of the electronic state m in Q′-space:

Em(Q′) ) Ẽm(0′) + 1
2

Q′TΛ′Q′ - ∑
l)1

∞ (1/2
l )( 2

G(m))2l-1
×

{ ∑
p

(λp - ∑
j

cpj(η
-(m)K(m))j)(J(m)TQ′)p +

∑
i,j

cij(J
(m)TQ′)i(J

(m)TQ′)j} 2l ×

[1 + 1

G(m)
g(m)TQ′ + 1

2G(m)
Q′TJ(m)(η(n) -

η(m))J(m)TQ′]-(2l-1)
(30)

The second term in the brace and the third term in the bracket
of eq 30 are small and may be ignored, and thereafter the
adiabatic potential energy takes more tractable form. The
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adiabatic angular vibrational frequencies of the modes belonging
to Γp can be directly read from eq 30:

ω′
k
2 ) Ω′

k
2 - 2

G(m) ∑
pp′

Jkp
(m)Jkp′

(m)(λp - ∑
j

cpj(η
-(m)K(m))j) ×

(λp′ - ∑
j

cp′j(η
-(m)K(m))j) (31)

where k ) 1, 2, ..., n, noticing that the remaining modes, those
do not participate in the coupling, have the same adiabatic and
diabatic frequencies. Also, it must true that for k + l:

∑
pp′

Jkp
(m)Jlp′

(m)(λp - ∑
j

cpj(η
-(m)K(m))j) ×

(λp′ - ∑
j

cp′j(η
-(m)K(m))j) ) 0 (32)

For a single inducing mode, eq 31 reduces to:

ω′
p
2 ) Ω′

p
2 - 2

G(m)(λp - ∑
j

cpj(η
-(m)K(m))j)2

(33)

and if the coupling is weak, we have ωp
′2 ) Ωp

′2 - λp
2/∆.

The adiabatic potential surface En(Q′) is obtained from Em(Q′)
in eq 30 by changing the sign of the third term of eq 30 (minus
to plus), replacing m by n everywhere except in the differences
(K(n) - K(m)) and (η(n) - η(m)) wherever they appear, and noticing
that Q′ now refers to the electronic state n. Likewise, the
adiabatic vibrational frequencies of Γp modes are obtained from
eq 31 by changing the sign of the second term (minus to plus)
and replacing m by n. Again, (K(n) - K(m)) and (η(n) - η(m))
differences remain unchanged.

2.3. Internal Conversion Decay Rate Constants. It has been
shown that the thermally averaged internal conversion decay
rate constant kIC(Ωab,T) from the statistically equilibrated initial
vibronic states {|aR〉} to the manifold of the final states {|b�〉}
may be expressed as the Fourier transform of the time domain
generating function G(t):28-30

kIC(Ωab, T) ) ∑
R
FR(T)ΓaR ) ∫-∞

∞
dt exp(iΩabt)G(t) (34)

where generating function is defined by:

G(t) ) 1

p2 ∑
R

∑
�
FR(T)|HaR,b�|2exp[i(ER - E�)t/p] (35)

Here, FR(T) is the Boltzmann distribution function for the initial
vibronic states, Ωab is the zero-zero transition frequency, ER
and E� are the (harmonic) vibrational energies (excluding the
zero-point energies) of the electronic states a and b, respectively,
and HaR,b� are the dynamic off-diagonal elements of the
Hamiltonian matrix (in the adiabatic, eq 8, or the diabatic, eq
13, electronic representation) that induce the internal conversion
transitions between the electronic states a and b.

In our previous work,22 we derived general expressions for
the generating function for two cases: the case in which the
internal conversion takes place between two adiabatic, and the
case in which it takes place between two diabatic harmonic
potential surfaces. The derivation included the effects of
displacement-distortion-rotation of the harmonic potential
surfaces, the promoting modes, and the temperature. In the
following, we shall present the result obtained for these cases.

For the case in which internal conversion occurs between
the adiabatic electronic states, the generating function has the
following form:

G(t) ) 2Nh(t)(det Γ′-1Γ″-1T′T″W1W2)
-1/2exp(-DTW3

-1D)
(36)

with

h(t) ) 1
2

R†(-W3
-1 + W4

-1)R + (R†W3
-1D)(DTW3

-1R) (37)

where the N × N symmetric matrices W1 ,W2 ,W3 , and W4

and the N × N diagonal matrices Γ′, Γ″, T′, and T″ are defined
in ref 22, and R is the N-dimensional column vector of the
nonadiabatic coupling matrix elements:

{Rp ) -ip〈Φa|∂/∂Q′p|Φb〉0, p ) 1, 2, ..., N}

〈 ...〉0 represents the value of the matrix elements in the vicinity
of some reference nuclear configuration, say the equilibrium
nuclear configuration of the ground electronic state, and D is
the N-dimensional displacement vector whose components { Dj}
are the equilibrium shifts between two electronic states a and
b. It should be noted that the “double primed” quantities refer
to the lower and the “single primed” quantities refer to the upper
electronic state. For the nontotally symmetric mode Qj, Dj ) 0,
and for the accepting mode Qj, Rj ) 0.

For the internal conversion between the diabatic electronic
states (belonging to different symmetry species), we obtain a
similar expression for the generating function:

G̃(t) ) 2Nh̃(t)(det Γ′-1Γ″-1T′T″W1W2)
-1/2exp(-DTW3

-1D)
(38)

with

h̃(t) ) 1
2

R̃†J(-W2
-1 + W1

-1)JTR̃ + (R̃†JW1
-1Γ″A″JTD)×

(DTJΓ″A″W1
-1JTR̃) (39)

Here, R̃p ) (1/p)∑p′Jpp′
(a)λp′, where J(a) is the Duschinsky matrix

between the excited a and the ground electronic states, and λp

is the first-order interstate coupling constant defined in eq 27.
All matrices (Γ′,Γ″,T′,T″,A′,A″,W1 ,W2 ,W3 ) have the same
definitions as in the adiabatic case, except that the diabatic
angular vibrational frequencies {Ω′k} and {Ω″k} have to be used
in the related equations.

3. Results and Discussion

In this section, we shall apply the low-temperature limit
versions of eqs 36 and 38 to calculate decay rate constants for
the 1B2u f1B3u, 1B2uf1Ag, and 1B3uf1Ag internal conversions
in pyrazine. In the low temperature limit, the internal conver-
sions take place from the ground vibrational level of the upper
electronic state. The relative positions of three electronic states
of interest are displayed in the following diagram.

The method of saddle point is used for approximate evaluation
of integral given in eq 34.31,32 The method is based on the fact
that the major contribution from the integrand in the integral
∫-∞

∞ dt exp[f(t)] comes from the vicinity of the saddle point ts

where f(t) is maximum [f′(ts) ) 0].
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Before proceeding with our theoretical results, we may outline
some experimental observations that have been made on the
decay rates of pyrazine.

Pyrazine exhibits a weak fluorescence both in solution6 and
in vapor,7 but strong phosphorescence in vapor and condensed
phases.8,9 Yamazaki et al.19 measured quantum yields for
fluorescence and intersystem crossing and also fluorescence
lifetimes in the vapor phase as a function of excitation energy,
ranging from the ground vibrational level of 1B3u state to higher
vibronic levels of 1B2u state. (For excitation at the electronic
origin of the 1B3u-1Ag, the decay times τF= 118 ps, τISC= 119
ps, and τIC = 10 ns were obtained.) They concluded that as
excitation energy is increased, kISC remains almost constant
throughout the energy region of 1B3u-1Ag and 1B2u-1Ag

transitions, and that as the excitation energy exceeds 35 000
cm-1, nonradiative decay rate increases rapidly with the
excitation energy and for highly excited vibrational levels of
1B3u state it reaches as high as 4 × 1010 s-1 (τIC = 25 ps). They
also estimated kIC = 7.7 × 1010 s-1 (τIC = 13 ps) for excitation
at the electronic origin of the 1B2u-1Ag followed by internal
conversion to 1Ag state (refer to Figure 5 of ref 19). In another
experimental work, Wang et al.20 excited pyrazine to within the
vicinity of the zero vibrational level in 1B2u state and observed
a decay time of (22 ( 1) ps, which was ascribed to 1B3uf1Ag

internal conversion after ultrafast dephasing from 1B2u state. The
observed decay time was in agreement with the lifetime, 25 ps,
of the higher vibronic level of 1B3u measured by Yamazaki et
al. In addition, they measured a decay time (108 ( 2) ps after
excitation to the zero-vibrational level of 1B3u state, which was
ascribed to the growth of triplet states due to dephasing from
optically prepared 1B3u pyrazine. Finally, in a more recent work,
Stert et al.21 measured a decay time of (20 ( 10) fs due to
internal conversion from the ground vibrational level of 1B2u

state, and an internal conversion decay time of (22 ( 1) ps for
1B3u state populated by the internal conversion from the 1B2u

state.
We now go on with the theoretical results. The 24

vibrational modes of pyrazine molecule are distributed among
the irreducible representations of the D2h point group
as:

5ag + 4b3g + 4b1u + 4b2u + 2au + 2b3u + 2b2g + b1g

yz is the molecular plane with the z axis passing through the
nitrogen atoms. The experimental ground-state vibrational
frequencies of these modes are collected in Table 1.

The most comprehensive ab initio calculations of 1B2u and
1B3u diabatic potential energy surfaces to date have been made
by Stock et al.11 based on CASSCF (complete active space self-
consistent field) and MRCI (multireference configuration inter-
action) and then by Raab et al.16 based on CIS (single-excitation
configuration interaction) ab initio calculations. The levels of
calculations for the various coupling constants are as follows:
The linear intrastate coupling constants κj

(m) and κj
(n) (for the

five totally symmetric modes), where m and n refer to 1B3u and
1B2u electronic states, respectively, at the CASSCF, MRCI, and
CIS levels; the quadratic intrastate coupling constants ηij

(m) and
ηij

(n) at the CASSCF and CIS levels; the linear interstate coupling
constant λp at the CASSCF, MRCI, and CIS levels; and finally
the quadratic interstate coupling constants cij only at the CIS
level. Here, we adopt all four sets of data, that is, CASSCF,
CASSCF/MRCI, CIS, and CIS/MRCI data, to calculate the
decay rate constants. However, it should be mentioned that the
quadratic intrastate coupling constants ηij

(m)(ηij
(n)) defined in the

present work are related to γij
(m)(γij

(n)) of ref 11 or aij
(m)(bij

(n)) of
ref 16 as:

TABLE 1: Vibrational Frequencies (cm-1) of 1Ag, 1B3u, and 1B2u Electronic States of Pyrazinea

1B3u
1B2u

vibration 1Ag calc. calc.

notation irrep obs.b CASSCF CIS CASSCF CIS

6a ag 596 608 595 542 593
1 ag 1015 1012 1008 1037 1013
9a ag 1230 1199 1219 1250 1202
8a ag 1582 1497 1594 1644 1601
2 ag 3055 3057 3056 3051 3057
6b b3g 704 650 619 620 659
3 b3g 1346 1330 1818 1286 1755
8b b3g 1525 1022 757 1574 751
7b b3g 3040 3040 3014 2969 3037

12 b1u 1021 477 477 895 941
18a b1u 1136 1045 1045 1077 1177
19a b1u 1484 1297 1297 1392 1424
13 b1u 3012 2974 2974 2942 3017
18b b2u 1063 1040 1039 953 953
14 b2u 1149 1432 1428 2031 2031
19b b2u 1416 1367 1495 1359 1359
20b b2u 3063 3069 3056 2991 2991
16a au 341 345 423 190 190
17a au 960 572 778 156 156
16b b3u 420 284 154 278 159
11 b3u 785 707 813 653 745
4 b2g 756 541 545 350 362
5 b2g 983 884 823 674 972

10a b1g 919 769 820 769 820
459 (427) 467 (491) 1313 (1559) 1648 (1450)

a In parentheses are the adiabatic vibrational frequencies of the mode b1g at CASSCF/MRCI or CIS/MRCI level. b Reference 16.
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TABLE 2: Normalized Duschinsky Matrices for the 1B3u-1Ag, 1B2u-1Ag, and 1B2u-1B3u Electronic States of Pyrazine at the
CASSCF Levela

electronic states ag modes ν2 ν8a ν9a ν1 ν6a

1B3u-1Ag ν2 -0.9998 (0.9997) -0.0165 (-0.0080) 0.0098 (-0.0192) -0.0008 (-0.0058) 0.0006 (-0.0068)
ν8a -0.0155 (-0.0115) 0.9953 (-0.9815) 0.0928 (-0.1885) -0.0143 (-0.0307) 0.0203 (0.0121)
ν9a -0.0113 (0.0179) 0.0928 (-0.1914) -0.9955 (0.9671) -0.0083 (0.1655) -0.01018 (-0.0195)
ν1 0.0011 (0.0027) -0.0155 (0.0018) 0.0066 (-0.1678) -0.9995 (0.9855) 0.0274 (0.0271)
ν6a 0.0008 (0.0073) -0.0188 (0.0080) -0.0122 (0.0256) 0.0276 (-0.0231) 0.9994 (0.9994)

1B2u-1Ag ν2 -1.0000 (0.9990) 0.0012 (-0.0377) 0.0019 (-0.0147) -0.0030 (-0.0208) -0.0019 (-0.0028)
ν8a 0.0013 (-0.0409) 0.9995 (-0.9677) 0.0304 (-0.2450) -0.0115 (-0.0405) 0.0023 (0.0180)
ν9a -0.0017 (0.0054) 0.0300 (-0.2468) -0.9988 (0.9685) -0.0336 (0.0267) -0.0189 (-0.0171)
ν1 0.0029 (0.0188) -0.0126 (-0.0341) 0.0319 (-0.0372) -0.9973 (0.9971) 0.0654 (-0.0533)
ν6a -0.0021 (0.0047) -0.0009 (0.0113) -0.0211 (0.0189) 0.0648 (0.0544) 0.9977 (0.9983)

1B2u-1B3u ν2 0.9998 (0.9994) 0.0169 (0.0288) 0.0096 (0.0075) 0.0018 (-0.0155) -0.0027 (0.0042)
ν8a -0.0175 (-0.0283) 0.9977 (0.9978) 0.0625 (-0.0595) -0.0037 (-0.0001) -0.0171 (0.0047)
ν9a -0.0086 (-0.0112) -0.0627 (0.0586) 0.9976 (0.9888) 0.0260 (-0.1371) -0.0082 (0.0052)
ν1 -0.0016 (0.0143) 0.0059 (0.0091) -0.0254 (0.1369) 0.9990 (0.9874) 0.0377 (-0.0774)
ν6a 0.0024 (-0.0029) 0.0164 (-0.0044) 0.0102 (0.0058) -0.0376 (0.0774) 0.9991 (0.9970)

electronic states b3g modes ν7b ν8b ν3 ν6b

1B3u-1Ag ν7b -0.9996 (-0.9998) -0.0258 (0.0101) -0.0147 (-0.0110) 0.0028 (-0.0144)
ν8b 0.0289 (-0.0080) -0.9091 (-0.9089) -0.3943 (-0.3673) -0.1314 (0.1971)
ν3 -0.0034 (0.01503) -0.3951 (0.3582) 0.9184 (-0.9300) -0.0230 (-0.0809)
ν6b 0.0066 (-0.0119) -0.1297 (0.2132) -0.0310 (-0.0030) 0.9916 (0.9769)

1B2u-1Ag ν7b 1.0000 (-0.9998) -0.0036 (0.0154) -0.0011 (0.0077) 0.0012 (0.0067)
ν8b -0.0036 (-0.0182) -0.9998 (-0.9080) -0.0174 (-0.2910) 0.0034 (-0.3009)
ν3 0.0010 (-0.0026) -0.0174 (0.2912) 0.9999 (-0.9556) -0.0011 (0.0457)
ν6b -0.0011 (0.0014) 0.0034 (-0.3009) 0.0012 (-0.0461) 1.0000 (0.9525)

1B2u-1B3u ν7b -0.9994 (0.9996) 0.0324 (-0.0075) -0.0030 (-0.0172) 0.0082 (0.0216)
ν8b 0.0296 (0.0165) 0.9152 (0.8730) 0.3790 (-0.0305) 0.1336 (-0.4865)
ν3 -0.0153 (0.0154) -0.3782 (0.09536) 0.9251 (0.9893) -0.0298 (0.1097)
ν6b 0.0038 (-0.0176) -0.1350 (0.4783) -0.0232 (-0.1419) 0.9906 (0.8665)

electronic states b1u modes ν13 ν19a ν18a ν12

1B3u-1Ag ν13 (0.9992) (-0.0200) (0.0338) (-0.0101)
ν19a (0.0079) (0.9491) (0.3116) (-0.0444)
ν18a (0.0365) (0.3024) (-0.9421) (-0.1405)
ν12 (0.0158) (0.0854) (-0.1195) (0.9890)

1B2u-1Ag ν13 1.0000 (0.9999) 0.0025 (0.0167) -0.0003 (-0.0018) 0.0090 (0.0011)
ν19a -0.0018 (-0.0165) 0.9898 (0.9977) 0.1229 (0.0650) -0.0720 (-0.0119)
ν18a 0.0044 (-0.0026) 0.0661 (0.0615) -0.8442 (-0.9794) -0.5320 (-0.1923)
ν12 -0.0080 (-0.0018) 0.1261 (0.0241) -0.5217 (-0.1912) 0.8437 (0.9813)

1B2u-1B3u ν13 0.9990 (0.9986) 0.0098 (0.0231) 0.0362 (0.0430) 0.0249 (0.0185)
ν19a -0.0166 (-0.0340) 0.9809 (0.9676) 0.1936 (0.2415) -0.0014 (0.0655)
ν18a -0.0200 (-0.0349) -0.1766 (-0.2383) 0.8902 (0.9682) -0.4195 (-0.0680)
ν12 -0.0367 (-0.0187) -0.0804 (-0.0803) 0.4108 (0.0494) 0.9074 (0.9954)

electronic states b2u modes ν20b ν19b ν14 ν18b

1B3u-1Ag ν20b 0.9998 (-0.9994) -0.0186 (-0.0294) -0.0023 (0.0149) -0.0047 (-0.0124)
ν19b -0.0189 (0.0312) -0.9924 (-0.9794) -0.1137 (0.1942) -0.0427 (0.0453)
ν14 0.0001 (-0.0090) -0.1138 (-0.1945) 0.9935 (-0.9808) -0.0011 (0.0062)
ν18b 0.0039 (-0.0138) -0.0426 (0.0453) -0.0038 (-0.0026) 0.9991 (0.9989)

1B2u-1Ag ν20b 1.0000 -0.0039 0.0034 0.0047
ν19b 0.0043 0.9158 -0.3825 0.1229
ν14 0.0015 -0.3895 -0.9202 0.0384
ν18b -0.0053 -0.0984 0.0830 0.9917

1B2u-1B3u ν20b 0.9998 (-0.9992) -0.0156 (0.0359) 0.0040 (-0.0115) 0.0087 (-0.0093)
ν19b -0.0124 (-0.0385) -0.8706 (-0.9655) -0.4843 (0.1977) 0.0853 (0.1651)
ν14 0.0106 (-0.0042) 0.4895 (0.2045) -0.8700 (0.9786) 0.0584 (0.0230)
ν18b -0.0083 (-0.0029) 0.0460 (0.1573) 0.0926 (-0.05610) 0.9946 (0.9860)

electronic states au modes ν17a ν16a

1B3u-1Ag ν17a 0.8433 (0.9998) -0.5375 (0.0216)
ν16a 0.5375 (-0.0216) 0.8433 (0.9998)

1B2u-1Ag ν17a 0.9989 -0.0468
ν16a 0.0468 0.9989

1B2u-1B3u ν17a 0.8675 (0.9977) 0.4974 (-0.0684)
ν16a -0.4974 (0.0684) 0.8675 (0.9977)

electronic states b3u modes ν11 ν16b

1B3u-1Ag ν11 0.9926 (0.9959) 0.1217 (-0.0910)
ν16b -0.1217 (0.0910) 0.9926 (0.9959)

1B2u-1Ag ν11 0.9892 (0.9990) 0.1466 (-0.0457)
ν16b -0.1466 (0.0457) 0.9892 (0.9990)

1B2u-1B3u ν11 0.9997 (0.9990) 0.0251 (0.0454)
ν16b -0.0251 (-0.0454) 0.9997 (0.9990)

electronic states b2g modes ν5 ν4

1B3u-1Ag ν5 0.9952 (0.9998) -0.0979 (-0.0179)
ν4 0.0979 (0.0179) 0.9952 (0.9998)

1B2u-1Ag ν5 0.9552 (0.9875) 0.2958 (0.1577)
ν4 -0.2958 (-0.1577) 0.9552 (0.9875)

1B2u-1B3u ν5 0.9217 (0.9845) 0.3879 (0.1754)
ν4 -0.3879 (-0.1754) 0.9217 (0.9845)

a In parentheses are the corresponding values at the CIS level.
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γij
(m) ) aij )

1
2( p2

Ω″ iΩ″ j
)1/2

(ηij
(m) - Ω″ i

2δij) (40)

with a similar relation between γij
(n) ) bij and ηij

(n), where {Ω″j}
are the ground-state angular vibrational frequencies.

As stated before, eq 21, the eigenvalues of the symmetric
matrix ηij

(m)(ηij
(n)) give the square of the diabatic angular

vibrational frequencies of the normal modes in 1B3u (1B2u)
electronic state, and the matrix constructed from its orthonormal
eigenvectors determines the extent of the Duschinsky rotation
of the normal modes of excited 1B3u (1B2u) with respect to those
of the ground 1Ag electronic state.The diabatic vibrational
frequencies of normal modes in 1B3u and 1B2u electronic states
calculated by diagonalization of the matrix ηij

(m)(ηij
(n)) are

presented in Table 1. However, it has to be noted that the
CASSCF-calculated matrix ηij

(m) for b1u modes and the CIS-
calculated ηij

(n) for the b2u modes lead to negative eigenvalues
(imaginary vibrational frequencies); therefore, the replacements
CISTCASSCF data have been made. Also, the CIS-calculated
vibrational frequencies of au modes in 1B2u state have been
replaced by the corresponding more reasonable CASSCF values.
The Duschinsky matrices connecting the excited and the ground
states normal modes of the same symmetry species are collected
in Table 2. The only vibrational mode that has different diabatic
and adiabatic excited vibrational frequencies is the coupling
mode ν10a (of symmetry b1g) whose adiabatic excited-state

frequency is calculated from eq 33, taking 2∆ ) 0.846 eV.
The results are reported at the bottom of Table 1. The
Duschinsky matrix J and the displacement vector D between
the normal modes of two excited electronic states 1B3u and 1B2u

can be calculated from the following relations:

J ) J(n)J(m)T, D ) D(n) - J(n)J(m)TD(m) (41)

Table 3 displays the Haung-Rhys factors corresponding to
displacements D(m), D(n), and D (e.g., Sj

(m) ) Ω″ j(Dj
(m))2/2p) for

the five totally symmetric modes.
Armed with Tables 1, 2, and 3, we can now calculate the

decay time constants. Tables 4 displays the calculated decay
time constants τIC ) 1/kIC for the 1B2uf1B3u internal conversion.
To explore the vibrational modes that have the highest contribu-
tions in the process, the decay time constants have been
calculated for 2-mode (ν10a , ν6a), 3-mode (ν10a , ν6a, ν1), 4-mode
(ν10a , ν6a, ν1, ν9a), 6-mode (ν10a plus all totally symmetric
modes), 12-mode (all g-type symmetry modes), and 24-mode
models; and to investigate the effects of distortions and rotations
separately,eachmodelissubdividedtodisplaced,displaced-distorted,
and displaced-distorted-rotated submodels. For displaced
submodels, the geometric averages of the vibrational frequencies
Ω′ j and Ω″ j, that is, (Ω′ jΩ″ j)1/2, are used. As Table 4 shows,
the inclusion of more modes, beyond the four modes ν10a, ν6a,
ν1, ν9a, does not have a drastic effect on the decay time constants.
Besides, the distortions and rotations, as compared to the

TABLE 3: Haung-Rhys Factors Sj for the 1B3u-1Ag, 1B2u-1Ag, and 1B2u-1B3u Electronic States of Pyrazine
1B3u-1Ag

1B2u-1Ag
1B2u-1B3u

CASSCF(CASSCF/MRCI) CIS(CIS/MRCI) CASSCF(CASSCF/MRCI) CIS(CIS/MRCI) CASSCF(CASSCF/MRCI) CIS(CIS/MRCI)

S2 0.003 (0.004) 0.002 (0.004) 0.004 (0.002) 0.001 (0.002) 0.0001 (0.001) 0.0007(0.002)
S8a 0.015 (0.041) 0.005 (0.015) 0.009 (0.016) 0.004 (0.017) 0.000 (0.131) 0.006 (0.038)
S9a 0.519 (0.650) 0.465 (0.591) 0.040 (0.037) 0.016 (0.022) 0.251 (0.337) 0.375 (0.457)
S1 0.203 (0.072) 0.200 (0.196) 1.527 (1.252) 1.006 (1.381) 0.662 (0.771) 0.542 (0.850)
S6a 0.840 (0.824) 0.771 (0.737) 0.900 (1.347) 1.447 (1.066) 3.539 (4.339) 4.420 (3.655)

TABLE 4: Zero-Zero Transition frequency, First-Order Vibronic Coupling Constant, and Decay Time Constant Associated
with 1B2uf1B3u Internal Conversion in Pyrazine

other theoretical estimates
1B2uf1B3u CASSCF(CASSCF/MRCI) CIS(CIS/MRCI) obs. CASSCF CIS

Ωab (cm-1) 6965a

λ10a (eV) 0.1676(0.1825) 0.208(0.1825)
τIC ) 1/kIC(fs): (20 ( 10)b

2-mode model
displaced 567.8 (114.9) 46.2 (206.1)
displaced-distorted 126.6 (36.9) 45.3 (200.8)
3-mode model
displaced 47.5 (16.7) 14.1 (20.6) 25f

displaced-distorted 28.2 (11.2) 14.1 (20.6)
4-mode model
displaced 25.3 (9.8) 7.8 (10.0)
displaced-distorted 18.0 (7.7) 7.8 (9.9) 30,c 40d 35e

6-mode model
displaced 25.3 (8.1) 7.7 (9.4)
displaced-distorted 17.9 (6.7) 7.7 (9.3)
displaced-distorted-rotated 20.2 (6.9) 6.0 (7.1)
12-mode model
displaced 25.3 (8.1) 7.7 (9.4)
displaced-distorted 16.1 (6.4) 7.5 (9.1)
displaced-distorted-rotated 17.3 (6.5) 5.8 (6.1) 35e

24-mode model
displaced 25.3 (8.1) 7.7 (9.4)
displaced-distorted 11.1 (5.4) 5.5 (6.7)
displaced-distorted-rotated 11.6 (5.5) 4.7 (5.7) 35e

a Reference 19. b Reference 21. c Reference 35. d Reference 24. e References 14 and 17. f References 23 and 24 (here, the parameters are
estimated empirically; see the text).
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displacements, of the vibrational modes have minor effects on
the decay process. It is also seen from Table 4 that the decay
time constants based on the CASSCF parameters are generally
higher than the corresponding values calculated from the CIS
data and that the CASSCF/MRCI and CIS/MRCI data yield
roughly the same values for the corresponding time constants.

However, the present results are in good agreement with the
observed decay time constants21 of (20 ( 10) fs and the time
constants calculated by other theoretical methods.14,17,24,34,35 In
ref 24, the calculations are performed at CASSCF levels, cc-
pVDZ basis set, taking λ10a ) 0.2489 eV; and in ref 17, the
value of the coupling constant λ10a is not reported. Presumably,

TABLE 5: Zero-Zero Transition Frequency, Nonadiabatic Coupling Constant, and Decay Time Constant Associated with
1B2uf1Ag Internal Conversion in Pyrazine

1B2uf1Ag CASSCF(CASSCF/MRCI) CIS(CIS/MRCI) obs. types of modes

Ωab (cm-1) 37 840a

〈Φa|(∂/∂Q′p)|Φb〉 (dimensionless) 3.60 (3.60) (Q′20b) 3.26 (3.13) (Q′20b)
τIC ) 1/kIC (ps): 13
2-mode model 20b, 17a
distorted 36.6 (36.6) 44.8 (48.3)
3-mode model 20b, 17a, 16a
distorted 36.1 (36.2) 44.2 (47.8)
distorted-rotated 36.3 (36.3) 44.4 (48.0)
4-mode model 20b, 17a, 16a, 6a
displaced-distorted 29.1 (26.2) 31.5 (37.1)
displaced-distorted-rotated 29.3 (26.3) 31.6 (37.3)
5-mode model 20b, 17a, 16a, 6a, 1
displaced-distorted 15.1 (15.3) 20.3 (20.4)
displaced-distorted-rotated 15.1 (15.3) 20.2 (20.5)
6-mode model 20b, 17a, 16a, 6a, 1, 9a
displaced-distorted 14.7 (15.0) 20.2 (20.1)
displaced-distorted-rotated 14.8 (15.0) 20.2 (20.2)
8-mode model 20b, 17a, 16a, all ag modes
displaced-distorted 14.5 (14.7) 20.1 (19.8)
displaced-distorted-rotated 15.5 (15.8) 18.7 (18.4)
17-mode model all u-type symmetry modes, all ag modes
displaced-distorted 13.5 (13.7) 18.0 (17.8)
displaced-distorted-rotated 14.4 (14.7) 16.9 (16.6)
24-mode model all modes
displaced-distorted 12.3 (12.2) 14.0 (14.1)
displaced-distorted-rotated 13 (13) 13 (13)

a Reference 19.

TABLE 6: Zero-Zero Transition Frequency, Nonadiabatic Coupling Constant, and Decay Time Constant Associated with
1B3uf1Ag Internal Conversion in Pyrazine

1B3uf1Ag CIS(CIS/MRCI) obs. types of modes

Ωab (cm-1) 30 875a

〈Φa|(∂/∂Q′p)|Φb〉 (dimensionless) 26.27 (23.49) (Q′11)
τIC ) 1/kIC (ns): 15
2-mode model 11, 8b
distorted 123.0 (153.9)
3-mode model 11, 8b, 16b
distorted 107.9 (134.9)
distorted-rotated 106.9 (133.7)
4-mode model 11, 8b, 16b, 6a
displaced-distorted 50.2 (64.1)
displaced-distorted-rotated 70.2 (89.5)
5-mode model 11, 8b, 16b, 6a, 9a
displaced-distorted 35.9 (38.0)
displaced-distorted-rotated 34.9 (37.0)
6-mode model 11, 8b, 16b, 6a, 9a, 1
displaced-distorted 28.8 (30.6)
displaced-distorted-rotated 28.5 (30.3)
8-mode model 11, 8b, 16b, all ag modes
displaced-distorted 28.0 (28.6)
displaced-distorted-rotated 26.1 (25.4)
14-mode model all g-type symmetry modes, 11, 16b
displaced-distorted 20.2 (21.4)
displaced-distorted-rotated 25.3 (25.3)
24-mode model all modes
displaced-distorted 13.1 (13.8)
displaced-distorted-rotated 15 (15)

a Reference 19.
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it is taken as 0.1825 eV as in a previous work, ref 24, from the
same authors. Reference 34 makes use of a displaced 3-mode
model composed of ν10a, ν6a, and ν1 modes in which the absolute
values of the linear intrastate coupling constants are determined
empirically and their signs from INDO/S CI calculations. The
empirical coupling constant λ10a is estimated to be 0.262 eV.

From the symmetry point of view, the promoting modes that
are capable to induce 1B2uf1Ag radiationless transitions are four
b2u modes, and those that could be active in 1B3uf1Ag internal
conversion are the two b3u modes. Because the values of the
nonadiabatic vibronic matrix elements for these promoting
modes were not available, we varied them, using the 24-mode
model, to obtain the decay times about 15 ns for 1B3uf1Ag

internal conversion, and about 13 ps for 1B2uf1Ag internal
conversion, as estimated by Yamazaki et al.19 The results are
presented in Tables 5 and 6. Our calculations show that for the
1B2uf1Ag internal conversion only the mode Q20b plays the main
role, as the promoting mode, and the rest do not have noticeable
effects. Likewise, for the 1B3uf1Ag internal conversion, only
the mode Q11 is the most effective promoting mode, and the
effect of the mode Q16b is negligibly small and may be ignored.

Attempts have been also made to find the minimal model
for the internal conversions both with respect to the number
and types of modes and with respect to the displacements,
distortions, and rotations of the modes that are involved in the
processes. Table 5 shows that, based on the CASSCF data, the
5-mode model consisting of promoting mode ν20b (b2u) and four
accepting modes: ν17a (au) plus three totally symmetric modes,
which have the highest Haung-Rhys coupling constants (Table
3), that is, ν6a, ν1, and ν9a, is capable of almost generating the
observed decay time for 1B2uf1Ag internal conversion. As
compared to the CASSCF, the calculations based on the CIS
data converge more slowly to the observed decay time.
Accordingly, Table 6 summarizes the calculations that have been
carried out on the basis of CIS data for the decay time constant
of the 1B3uf1Ag internal conversion. Although the calculations
converge slowly, it seems that the 6-mode model composed of
the promoting mode ν11 (b3u) and five accepting modes,
ν16b (b3u), ν8b (b3g), and three totally symmetric modes ν6a,
ν1, and ν9a, can roughly produce the observed decay time
constant for the 1B3uf1Ag internal conversion and can be
considered as the minimal model for this process. The use of
CASSCF data for the 1B3uf1Ag internal conversion yields the
results that are inconsistent with the other levels of calculations,
which are skipped in Table 6.

Finally, it should be pointed out that the present calculations
ignore the anharmonicities of the excited potential surfaces
caused by the Q10a mode, although it acts as an accepting mode
for the internal conversions from the excited electronic states
to the ground electronic state.

4. Summary and Conclusion

In this Article, the general expressions we derived in our
previous work22 for calculating the internal conversion rate
constants between two adiabatic, eqs 34 and 36, and between
two diabatic, eqs 34 and 38, electronic states have been used to
estimate the decay rate constants for 1B2u(ππ*)f1B3u(nπ*),
1B2u(ππ*)f1Ag, and 1B3u(nπ*)f1Ag internal conversions in
pyrazine. To calculate the adiabatic harmonic vibrational
frequencies, an expression in terms of the diabatic coupling
constants and the parameters determining the diabatic harmonic
potential energy surfaces is also derived, eq 31.

The decay time constants have been calculated by employing
the available CASSCF and MRCI ab initio data of Stock et

al.11 and CIS ab initio data of Raab at al.16 for the diabatic
potential energy surfaces of 1B2u and 1B3u electronic states of
pyrazine. The eigenvalues of the symmetric matrix of the
diabatic intrastate coupling constants give the diabatic vibrational
frequencies of the normal modes in the excited 1B3u (1B2u)
electronic state, Table 1, and its eigenvectors determine the
Duschinsky rotation between normal modes (of the same
symmetry species) of the excited 1B3u (1B2u) and the ground
electronic states, Table 2. The displacement vectors of five
totally symmetric modes of pyrazine expressed in terms of
Haung-Rhys factors are presented in Table 3.

The decay time constants obtained in the present work for
the 1B2uf1B3u internal conversion, Table 4, are in good
agreement with the decay time of (20 ( 10) fs21 obtained
experimentally. The distortions and rotations of the normal
modes have minor effects on the decay time of this internal
conversion. It has been also explored that a 4-mode model
composed of the promoting mode ν10a ( b1g) and three totally
symmetric modes ν6a, ν1, and ν9a, as the accepting modes, can
approximately produce the observed decay time constant for
this process.

The lack of the nonadiabatic vibronic matrix elements
between the 1B3u (1B2u) and the ground electronic states led us
to estimate them from the decay times observed by Yamazaki
et al.19 for the 1B3uf1Ag and 1B2uf1Ag internal conversions in
pyrazine, Tables 5 and 6. On the basis of the present ab initio
data, it was also concluded that the mode Q20b (of symmetry
b2u) and the mode Q11 (of symmetry b3u) were the most
important promoting modes for the 1B2uf1Ag and 1B3uf1Ag

internal conversions, respectively. In addition, we found that a
5-mode model consisting of promoting ν20b(b2u) and four
accepting modes, ν17a(au) plus three totally symmetric modes
ν6a, ν1, and ν9a; and a 6-mode model composed of the promoting
mode ν11(b3u) and five accepting modes, ν16b(b3u), ν8b(b3g), and
three totally symmetric modes ν6a, ν1, and ν9a, could be
considered as the minimal models for the 1B2uf1Ag and
1B3uf1Ag internal conversions, respectively.

Noted Added after ASAP Publication. This article posted
ASAP on February 11, 2009. Equation 7 has been revised. The
correct version posted February 13, 2009.
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